Challenges:
There are four hurdles to creating universal medical records. A Blockchain infrastructure solves each of these pain points.
1: Interoperability: According to the Premier Healthcare Alliance, a lack of interoperability costs 150,000 lives and $18.6 billion per year. Using Blockchain, entrants across every entity in the medical sector can now share and validate the same ledger and database. This would create several advantages for those using it. Blockchain-based document storing, including the use of smart contracts, would replace physical documents and processes. This innovation would lead to a major reduction in human error as the redundant act of rekeying information is virtually eliminated. There would be no down time in such a system. Private information and updates would be available to relevant parties 24/7 regardless of geographic location or other known barriers. Shared ledgers of truth weren’t possible before Blockchain technology.
2: Security: Medical records contain a wealth of highly-sensitive information. Therefore, storing them in a centrally controlled universal system is a precarious idea. A breach to the database could result in the compromise and theft of billions of records. In a decentralized and distributed environment, this type of mass data hack would be impossible. Patients would be in full control of their own records, providing access to chosen individuals through multi-signature contracts. Private information is never stored or replicated anywhere outside of the Blockchain. A smart contract would allow another party to access and update the content inside of the medical record. After the contract self-executes the terms agreed upon, this outside party would no longer have access.
3: Cost: A universally centralized platform would cost a prodigious amount of money to upkeep. Hospitals, insurance providers, pharmaceutical companies, and many other parties spend billions of dollars annually to keep their systems up and running in an efficient and secure manner. Running many of these processes on a Blockchain would either be free or require a de minimis per transaction fee. Eventually, these savings would be cycled back to the patient receiving care.
4: Scalability: Network neutrality means there is no single owner of the network. Participants can easily plug in and out of the database. A neutral network also drastically lowers the traditional barriers of adoption. Creating a distributed platform would enable a decentralized global health network that would tear down barriers the same way the internet did for accessing information across borders. The Blockchain is resilient because it is immutable and validated by all participants. It fosters trust as it grows.
SMART CONTRACTS AND REAL – WORLD APPLICATIONS
Fund Contributions:
A smart contract is a piece of code that self-executes when certain conditions are met on the Blockchain (think of it as a digital If/Then agreement). As unadorned as this sounds, it could have significant implications across the healthcare sector. Smart contracts could be set up with other peers, organizations, or even machines. The mutual agreement could dictate virtually anything.
For example, it could state that once a particular condition is met, a set of predefined actions occur (e.g., If city ‘A’ has an earthquake of ‘B’ magnitude, then ‘C’ amount of dollars will be allocated to local hospitals and the Red Cross fund instantly). In this particular case, utilizing Big Data Analytics, Blockchain technology and smart contracts would enable governments and insurance companies to immensely speed up their response time to natural disasters.
Paying for Data:
Imagine giving the most talented Data Scientists in the world access to a pool of medical information, all while protecting the privacy of the individual and granting them a reward at the same time. What kind of medical insights would result from that comprehensive research? This represents another scenario made possible by the Blockchain.
Patients would be given a choice to grant health researchers access to certain personal medical information. To incentivize patients to do this, researchers would reward their sharing by paying a small fee and a smart contract could be coded into the Blockchain stating, “If patient ‘W’ gives ‘X’ amount of data to the public health bank, then ‘Y’ amount of dollars will be sent to wallet ‘Z’.” From the patient’s end, this process isn’t much different from granting access to a mobile application that can view and sell your private data online. The difference in this use case is that the patient remains pseudo-anonymous while also being rewarded money in the form of micro-transactions paid into an account through the Blockchain.
This arrangement, which is currently being constructed, would enable researchers to explore vast amounts of new information which would give them a better sense of macro trends forming in the world of medicine. The capability to conduct medical research on an anonymous pool while remaining HIPAA compliant is an illustration of convergence between Big Data Analytics and the Blockchain, representing tremendous opportunity for the general public.
Health Alerts:
To illustrate the convergence of IoT and Blockchain, let’s walk through a use case involving a patient, a doctor, a smart bottle, and a wearable device. The example would work as follows. The doctor prescribes Lipitor to his patient, a medication that lowers cholesterol. The Lipitor is stored inside of a smart bottle that can determine how many pills have been taken based on the weight of the bottle. Two smart contracts are then written into the Blockchain stating, “if patient ‘J’ misses two days of medication, then a warning alert will be sent to wearable device ‘K’.”
The second smart contract might state, “if patient ‘J’ misses an entire week of medication, an alert will be sent to the patient’s healthcare provider ‘L’ and spouse ‘M’.” The convergence of IoT and Blockchain in this example creates a more trustless relationship between the doctor and the patient while also making the patient more accountable to his/her health needs.
Provenance of drugs:
Blockchain technology could provide incredible efficiencies to medical supply chains. Specifically, immutable logs and tracking information that are uploaded to the Blockchain could yield the entire life cycle of a pharmaceutical drug to any relevant party. This could help eliminate the counterfeiting of drugs, especially drugs manufactured in other countries. A study by the UC San Diego School of Medicine stated that potentially one million people die each year due to mislabeled and fraudulently produced medications. Even more daunting, the World Health Organization recently reported that nearly one-third of identified counterfeit drugs contain no active ingredient at all, while more than 20 percent either have incorrect quantities of active ingredients or contain the wrong ingredients altogether.
By using the Blockchain to track the entire lifecycle of a drug from birth to its consumption, a consumer could see where the active ingredients had come from, where they were shipped, and where they were compounded to make the particular medication. Through the distributed database, attaching a digital passport to these basic goods helps certify its authenticity and origin.
Blockchain technology will soon become a center of innovation that enables inclusion across multiple industries for billions of people. The industries most likely to be affected by this disruption are the ones that are most fragmented. Healthcare has not kept pace with technology.
However, with the emergence of Big Data Analytics, artificial intelligence, and Blockchain technology, we are about to see an entirely new wave of healthcare innovation. This will lead to less expensive care, longer and healthier lives, exponential acceleration of research, and a patient-centric healthcare model that we haven’t seen in decades. Companies and organizations across this industry will have two options; adapt or risk being disrupted by technology.